Features

- For general purpose applications
- Metal-on-silicon Schottky barrier device which is protected by a PN junction guard ring. The low forward voltage drop and fast switching make it ideal for protection of MOS devices, steering, biasing and coupling diodes for fast switching and low logic level applications.
- This diode is also available in the MiniMELF case with type designation LL5711 and LL6263.
- Pb / RoHS Free

Mechanical Data

- Case: DO-35 Glass Case
- Weight: approx. 0.13 g

DO-35		
Dim	Min	Max
A	25.40	-
B	-	4.00
C	-	0.60
D	-	2.00
All Dimensions in mm		

Maximum Ratings and Electrical Characteristics @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Parameter			Symbol				Unit
Repetitive Peak Reverse Voltage		1N5711	$V_{\text {RrM }}$	70			V
		1N6263			60		
Power Dissipation (Infinite Heatsink)			P_{D}	$400^{(1)}$			mW
Maximum Single Cycle Surge $10 \mu \mathrm{~s}$ Square Wave			$\mathrm{I}_{\text {FSM }}$	2			A
Thermal Resistance Junction to Ambient Air			$\mathrm{R}_{\text {өJA }}$	$0.3{ }^{(1)}$			${ }^{\circ} \mathrm{C} / \mathrm{mW}$
Junction Temperature			T_{J}	$125^{(1)}$			${ }^{\circ} \mathrm{C}$
Storage temperature range			$\mathrm{T}_{\text {S }}$	-55 to $+150{ }^{(1)}$			${ }^{\circ} \mathrm{C}$
Parameter	Symbol	Test Condition		Min	Typ	Max	Unit
$\begin{array}{ll}\text { Reverse Breakdown Voltage } & \begin{array}{l}\text { 1N5711 } \\ \text { 1N6263 }\end{array}\end{array}$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{R}}$	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		$\begin{aligned} & 70 \\ & 60 \end{aligned}$	-	-	V
Reverse Current	I_{R}	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$		-	-	200	nA
Forward Voltage Drop	V_{F}	$\begin{aligned} & I_{F}=1 \mathrm{~mA} \\ & I_{F}=15 \mathrm{~mA} \end{aligned}$		-	-	$\begin{array}{r} 0.41 \\ 1.0 \end{array}$	V
$\begin{array}{ll}\text { Diode Capacitance } & \text { 1N5711 } \\ & \text { 1N6263 }\end{array}$	Cd	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$,	MHz	-	-	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$	pF
Reverse Recovery Time	Trr	$I_{F}=I_{R}=5 r$ recover to		-	-	1	ns

Note:

(1) Valid provided that leads at a distance of 4 mm from case are kept at ambient temperature..

Typical variation of forward current and forward voltage for primary conduction through the schottky barrier

Typical capacitance curve as a function of reverse voltage

Typical forward conduction curve of combination schottky barrier and PN junction guard ring

Typical variation of reverse current at various temperatures

